

Faculty of Mechanical Science and Engineering Institute of Fluid Power

Investigation of the Potential of Different Cooling System Structures for Machine Tools

- Introduction
- Cooling system structure design
- System modelling and validation
- Potential analysis of cooling structures
- Summary & outlook

Linart Shabi Institute of Fluid Power (IFD) Dresden

- Motivation

- Production processes (energy losses) \rightarrow thermal energy
- Different generated heat \rightarrow temperature fluctuation
- Temperature variation \rightarrow thermo-elastic deformation
- Displacement of TCP \rightarrow reduction of machine accuracy

Challenges

- Thermal behavior of cooling systems \rightarrow not analyzed in detail
- Energy demand of cooling system \rightarrow inadequate information
- Previous projects \rightarrow efficient components & control strategies
- Main goal \rightarrow uniform temperature, minimal energy demand

Thermo-energetic Design of Machine Tools

www.transregio96.de

11:FK Cooling system structure design

Cooling system of DBF630

- Cooling system cools three components
- Centrally fixed displacement pump
- ➢ Rotary table & main drive → cooled directly
- > Cooling unit (heat sink) \rightarrow in the return flow

Schematic representation of cooling system of DBF630

Cooling system structure design

Cooling system of DBF630

- Cooling system cools three components
- Centrally fixed displacement pump
- ➢ Rotary table & main drive → cooled directly
- > Cooling unit (heat sink) \rightarrow in the return flow

Cooling system of DMU80

- Cooling systems cools 13 components
- > Cooling unit (heat sink) \rightarrow bypass cooling
- \succ Electrical cabinet \rightarrow separate cooling unit
- > 3-Way valve \rightarrow used as diverting valve

Schematic representation of cooling system of DMU80

- > Methodology of the model development \rightarrow thermo-hydraulic network modelling
- \blacktriangleright Hydraulic & thermodynamic domain \rightarrow laws of electrical engineering (Kirchhoff's circuit)

- > Methodology of the model development \rightarrow thermo-hydraulic network modelling
- > Hydraulic & thermodynamic domain \rightarrow laws of electrical engineering (Kirchhoff's circuit)
- → Heat transfer at the hoses is considered → α_{inside} $\alpha_{conduction}$

$$Re = \frac{D_H \cdot V}{\nu \cdot A}$$

$$Pr = \frac{c_{fluid} \cdot \rho \cdot v}{\lambda_{fluid}}$$

$$Nu = 0.0235 \cdot (Re^{0.8} - 230) \cdot (1.8 \cdot Pr^{0.3} - 0.8) \cdot [1 + \left(\frac{d_i}{l}\right)^{\frac{2}{3}}]$$
Fluid α_{inside}

$$\alpha_{inside} = \frac{\lambda_{fluid} \cdot Nu}{L}$$
Enforced convection
$$\alpha_{con.} = \frac{2 \cdot \lambda_{con.}}{d_o \cdot ln\left(\frac{d_o}{d_i}\right)}$$
for cylinder shape

- > Methodology of the model development \rightarrow thermo-hydraulic network modelling
- > Hydraulic & thermodynamic domain \rightarrow laws of electrical engineering (Kirchhoff's circuit)
- → Heat transfer at the hoses is considered → α_{inside} $\alpha_{conduction}$ $\alpha_{outside}$

- > Methodology of the model development \rightarrow thermo-hydraulic network modelling
- > Hydraulic & thermodynamic domain \rightarrow laws of electrical engineering (Kirchhoff's circuit)
- → Heat transfer at the hoses is considered → α_{inside} $\alpha_{conduction}$ $\alpha_{outside}$
- Developing Simulation model of the current cooling system

Element	Parameter
Thermal or hydraulic capacity	Geometry of the connections
Thermal resistance	$\alpha_{inside} \alpha_{outside} \alpha_{con.}$ fluid properties, pipes properties, ambient properties
hydraulic resistance	Description form in the simulation software, $\alpha(Re)$, $\zeta(Re)$, laminar resistance, $(\Delta p, Q)$ characteristic curve, reference measurement
Heat input	With aid of measurement is calculated by the equation (15)
Heat output	Calculated by forced convection, free convection and heat convection of the hoses, equations (5-14)
Flow valve	characteristic curve of the valve
Pump	Flow rate and system pressure
Tank	Tank capacity e.g. 15 l
Cooling unit	Data sheets of the cooling unit, e.g. cooling capacity 4.5 kW
	Element Thermal or hydraulic capacity Thermal resistance hydraulic resistance Heat input Heat output Flow valve Pump Tank Cooling unit

Model parameters for the simulation model

- > Measurement on the machine tools \rightarrow different operating processes
- \succ Validation the simulation model \rightarrow high accuracy of the thermal and hydraulic quantities

Comparison of temperature development simulation and measurement in the idle process of DMU80

- > Measurement on the machine tools \rightarrow different operating processes
- \succ Validation the simulation model \rightarrow high accuracy of the thermal and hydraulic quantities

Comparison of temperature development simulation and measurement in the manufacturing process of DMU80

- > Measurement on the machine tools \rightarrow different operating processes
- \blacktriangleright Validation the simulation model \rightarrow high accuracy of the thermal and hydraulic quantities
- > Heat transport through the hydraulic pipe \rightarrow 1% of cooling unit performance (4.5 kW)

Total heat transport through the hydraulic hoses of the DMU80

Fluidtechnik TU Dresden

Deficit of the current cooling system structures

- ▶ High energy consumption \rightarrow 12% DBF630, 26% DMU80 /4,12/
- ➤ Investigation of cooling systems → ineffectively cooling
- > Supplied cooling medium \rightarrow does not match the component demand
- > Pump performance \rightarrow does not match to thermal load

Fluidtechnik TU Dresden

Structure 2

Mixed fluid with predefined temperature

Developing new cooling system structures

Structure 3

Decentralized, variable

speed drive units, tanks

and cooling units

Design of the new cooling system structures

- Individually component-specific supply (pump or proportional valve)
 - > Controlled cooling volume flow \rightarrow minimizing energy demand
 - > Precise temperature control \rightarrow homogenous temperature field at the component
 - > Reducing of displacement of TCP \rightarrow enhance the machine accuracy
- The control compares T_{actual} with T_{set}
 - \rightarrow controlling of cooling volume flow
- Each component is supplied with a different demand-oriented cooling volume flow
- ➤ Inactive pump or valve → Component's temperature doesn't exceed predefined limits

Potential analysis of cooling structures

Potential analysis structure 1, 2, 3

- Stationary behavior of cooling system
- Average equivalent heat flow

New cooling structures

- ➢ Different T_{set}
- ➤ T_{actual} constant
- Volume flow control
- Lower hydraulic power

Current cooling structures

- ➢ No T_{set} possible
- T_{acutal} depends from heat input
- Uncontrolled volume flow
- Higher hydraulic power

Potential analysis of cooling structures

Potential analysis structure 1, 2, 3

- Stationary behavior of cooling system
- Average equivalent heat flow

New cooling structures

- ➢ Different T_{set}
- ➤ T_{actual} constant
- Volume flow control
- Lower hydraulic power

Current cooling structures

- ➢ No T_{set} possible
- T_{acutal} depends from heat input
- Uncontrolled volume flow
- Higher hydraulic power

Motivation and main goal

- > Reducing of thermo-elastic deformation \rightarrow enhancing of machine accuracy
- > Demand-oriented cooling system \rightarrow uniform temperature, minimal Energy demand

Deficits of current cooling structures

- > Cooling systems \rightarrow high energy consumption (12% to 26%)
- > Non-matching supplied cooling medium \rightarrow temperature fluctuation (ΔT = 3 to 5K)
- ➢ Fixed speed drive → high hydraulic energy

Benefits of new cooling structures

- > Controlled cooling medium flow \rightarrow minimization of energy demand
- > Matching supplied cooling medium \rightarrow temperature difference (ΔT = 0.2 to 0.4 K)
- > Variable speed drive \rightarrow lower hydraulic energy (53% to 70.5%)

11iFK Summary and outlook

Extension of simulation models

- > E-Motor, Frequency converter, etc.
- Energetic evaluation of the overall system
- Calculation of efficiency
- Showing the energy flow paths

Extension of simulation models

- > E-Motor, Frequency converter, etc.
- Energetic evaluation of the overall system
- Calculation of efficiency
- Showing the energy flow paths

Extension of simulation models

- > E-Motor, Frequency converter, etc.
- Energetic evaluation of the overall system
- Calculation of efficiency
- Showing the energy flow paths
- Development of a test rig
- Practice investigation of cooling structures
- Demonstrate the benefit of the structures
- Experimentally sound statement

Extension of simulation models

- > E-Motor, Frequency converter, etc.
- Energetic evaluation of the overall system
- Calculation of efficiency
- Showing the energy flow paths

Development of a test rig

- Practice investigation of cooling structures
- Demonstrate the benefit of the structures
- Experimentally sound statement
- Coupling with a demonstration machine, measurement TCP displacement

Faculty of Mechanical Science and Engineering Institute of Fluid Power

Supported by:

Thank you for your attention

Linart Shabi - linart.shabi@tu-dresden.de

SFB/Transregio 96 Thermo-energetic Design of Machine Tools www.transregio96.de

DFG

Technische Universität Dresden | Institute of Fluid Power | Chair of Fluid-Mechatronic Systems Prof. Dr.-Ing. J. Weber | Tel. 0351-463 33559 | fluidtronik@mailbox.tu-dresden.de