

Piston Slippers for Robust Water Hydraulic Pumps

Schoemacker, Florian Murrenhoff, Hubertus

Water Hydraulics

Applications

- Food industries
- Pharmaceutic industries
- Mining
- Descaling

Advantages

- Not flammable
- Not toxic
- Good availability of tap water

Challenges

- Low viscosity
- Poor lubrication
- Different materials
- Complex components

- Plunger pumps
- Axial piston pumps
- Radial piston pumps

- Development of water hydraulic radial piston pump
 - Tap water as pressure medium
 - Water lubrication
 - Pressure level > 160 bar
 - \rightarrow Increased power density
- Tribological contacts
 - Load carrying capacity
 - Leakage, wear
- Simulation development
- Comparison of piston slippers
 - Axial piston pump
 - Radial piston pump

1 Introduction

2 Simulation Model and Results

3 Effect of Slipper Deformation

4 Conclusion and Outlook

Reynold-Equation in Polar Coordinate System

Reynolds-Equation

ifK

- Newtonian fluid
- Incompressible fluid
- Laminar flow with Re << 1
- Polar coordinate system
 - Fluid film under slipper pad
 - → Plate geometry
- Modeling
 - Fluid film pressure
 - No contact pressure model
 - No model of surface roughness

$$\frac{\partial}{\partial r} \left(r \cdot \frac{h^3}{12 \cdot \mu} \cdot \frac{\partial p}{\partial r} \right) + \frac{\partial}{\partial \varphi} \left(\frac{h^3}{12 \cdot \mu} \cdot \frac{1}{r} \cdot \frac{\partial p}{\partial \varphi} \right) - \frac{u_r}{2} \cdot r \cdot \frac{\partial h}{\partial r} - \frac{u_{\varphi}}{2} \cdot \frac{\partial h}{\partial \varphi} = \frac{\partial h}{\partial t} = 0$$

Comparison of Piston Slippers

Slipper geometry

ifK

- Axial piston pump (APP)
- Radial piston pump (RPP)

- Calculation of hydrostatic compensation
 → Load carrying capacity
- Leakage

 $q_{C,eff} = \frac{F_{Fluid}}{F_{Piston}} = \frac{\int p_{(r,\phi)} \cdot dA}{p_{HP} \cdot D_{Piston}^2 \cdot \frac{\pi}{4}}$

$$Q_{Leakage} = Q_p + Q_v \Big|_{r=D_{Pocket}/2}$$

Comparison of Piston Slippers

Slipper geometry

■ 10 µm

1ifK

Axial piston pump (APP)

 $\Delta R = R_{Curve} - R_{Ecc}$

Radial piston pump (RPP)

20 µm

- Calculation of hydrostatic compensation
 → Load carrying capacity
- Leakage

 $q_{C,eff} = \frac{F_{Fluid}}{F_{Piston}} = \frac{\int p_{(r,\phi)} \cdot dA}{p_{HP} \cdot D_{Piston}^2 \cdot \frac{\pi}{4}}$

$$Q_{Leakage} = Q_p + Q_v \Big|_{r=D_{Pocket}/2}$$

Dynamic Pressure Build-Up during Motion

- Calculation of dynamic pressure build-up
 - Lateral movement of piston-slipper-assembly
 - Slipper is tilted against plane surface
- Hydrodynamic compensation
- Leakage

 $q_{C,eff} = \frac{F_{Fluid}}{F_{Piston}} = \frac{\int p_{(r,\phi)} \cdot dA}{p_{HP} \cdot D_{Piston}^2 \cdot \frac{\pi}{A}}$

 $Q_{Leakage} = Q_p + Q_v \Big|_{r=D_{Pocket}/2}$

Static, no motion

	APP	RPP Δ <i>R</i> = 10 μm	RPP ∆ <i>R</i> = 20 μm
q _{C,eff}	93.2 %	91.6 %	89.8 %
$Q_{Leakage}$	100 % (0.088 ml/min)	176 % (0.155 ml/min)	300 % (0.264 ml/min)

Results

11:FK

Static, no motion				100 90 90 90 90 90 90 90 90 90	
	APP	RPP Δ <i>R</i> = 10 μm	RPP Δ <i>R</i> = 20 μm	$\begin{bmatrix} 80 \\ 70 \\ 60 \\ 9 \\ 50 \end{bmatrix} = - RPP \Delta R=20 \mu m$	
q _{C,eff}	93.2 %	91.6 %	89.8 %		
$Q_{Leakage}$	100 % (0.088 ml/min)	176 % (0.155 ml/min)	300 % (0.264 ml/min)	6.5 7 7.5 8 8.5 9 9.5 10 Radius (mm)	
Dynamic $q_{C,eff} = 94.2 \%$ APM $Q_{Leckage} = 0.617 \text{ ml/min}$			AP i 7 ml/min	$ \begin{array}{l} \Lambda \\ q_{C,eff} = 93.3 \% \\ Q_{Leckage} = 0.837 \text{ ml/min} \end{array} \end{array} $	
0.7 0.6 0.5 0.4 0.3 10 0 0 0 0 0 0 0 0 0					
0.7 0.6 0.6 0.5 0.4 0.3 10 0		100 50 10 10 0 0		0	

Introduction
Simulation Model and Results
Effect of Slipper Deformation

11if Deformation of Slipper

- Increased load carrying capacity due to over compensation
- Leakage increased by factor 5 compared to undeformed result

Simulation results

•
$$q_{C,eff} = 106.7 \%$$

•
$$Q_{Leakage} = 0.81$$
 ml/min

- Increased load carrying capacity due to over compensation
- Leakage increased by factor 5 compared to undeformed result

Simulation results

•
$$q_{C,eff} = 106.7 \%$$

•
$$Q_{Leakage} = 0.81$$
 ml/min

	Introduction
2	Simulation Model and Results
3	Effect of Slipper Deformation
4	Conclusion and Outlook

FK **Conclusion and Outlook**

- Simulation of piston slippers
- Radial piston pump
 - Effect of manufacturing tolerances
 - \rightarrow Lower load carrying capacity
- Deformation of plastic slippers
 - Same magnitude as gap height
 - Overcompensation
 - Increased leakage
- Maximum pressure level for water hydraulics
- Development water hydraulic radial piston pump

pistor

slipper

pressure p

pressure distribution

height (µm)

gap l 04 0.3

0.6

0.5

100

50

10

pressure (bar)

0

PEEK

Thank you for your attention!

Contact:

Schoemacker, Florian Florian.Schoemacker@ifas.rwth-aachen.de

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

