

Comparing Electrical and Mechanical Valve Actuation in a Variable Displacement Inline Piston Pump

> James Marschand Graduate Researcher Purdue University

1	Background and Motivation
2	Digital Displacement Control
3	Prototype Design
4	Experimental Testing
5	Results and Comparison
6	Conclusions and Future Work

Background and Motivation

- Fluid power systems account for
 - 5% of all energy transferred in the U.S.
 - 7-8% of CO₂ emmisions in the U.S.
- Average system efficiency is only 20%
- Increasing by 5% leads to:
 - \$20 billion saved
 - Reduction of 90 million tons of CO₂ emmisions
- Increasing pump efficiency increases system efficiency
- State of the art pumps experience decrease in efficiency across range of displacement

1iff Digital Displacement Control

Digital Pump/Motor Advantages

- Higher efficiency across operating range
 - Eliminates valve plate and port plate
 - Leakages scale closely with displacement
- Pumping of non-conventional fluids (water)
- Valves can open against high pressure
 - Self starting in motoring
- Freedom in operating strategies
- Lower cost
 - No need for pilot pressure
 - No electrical energy needed

Digital displacement on/off valve placement

Digital Displacement Control

• Flow Diverting

- Excess flow taken into the chamber is diverted back to the low pressure port
- Flow Limiting
 - Amount of flow taken into the chamber is limited to the desired flow
- Sequential (Diverting or Limiting)
 - Individual cylinders are operated at full or zero displacement

1iff Digital Displacement Control

• Flow Diverting

- Excess flow taken into the chamber is diverted back to the low pressure port
- Flow Limiting
 - Amount of flow taken into the chamber is limited to the desired flow
- Sequential (Diverting or Limiting)
 - Individual cylinders are operated at full or zero displacement

- Base unit- CAT Model 1861
 - 3-piston inline pump
 - Fixed displacement
 - High pressure water applications
 - Modular design
 - Lip seals
- Two seperate prototypes
 - Electrically actuated valves (EAV)
 - Mechanically actuated valves (MAV)
- New block
 - Housing for on/off valves

CAT Model 1861 base model (CAT Pumps)

Electically Actuated Prototype

- Solenoid operated on/off valves
 - Valve opening area limited by solenoids
- Requires sensors and controls for operation
- Low repeatability

Cross section of EAV block (left), Schematic of internal ports of the EAV (right) (Holland 2012)

Mechanically Actuated Prototype

Cam actuated valves

ifK

- Half masking cams
- Dual input planetary gear system
- Outlet valve replaced with check valve
- Simple hand control
 - Adjustment of pressure and displacement

н 0 0 O second block crankcase first block actuating cams on/off valves check valves piston

Schematic of internal ports of the MAV (Top), Cross Section of MAV block (bottom) (Helmus 2017)

Mechanically Actuated Prototype

3/19/2018 James Marschand

Multi-piston digital pump/motor test stand

- 3-piston digital pump/motor
- On/off valves for each piston
- In chamber pressure transducers
- Inlet and outlet pressure and flow sensors
- Two accumulators

11^{ifK} Results f

Results for Electrical Actuation

Overall hydraulic efficiency for pumping, at 103 bar, 500rpm (left), electrical energy requirements, pumping, 103 bar, 500 rpm (right) (Holland 2012)

- Each operating strategy was tested
- Inverse relationship between electrical power consumption and hydraulic efficiency
- Efficiency does not drop below 45% in worse operating conditions

Results for Mechanical Actuation

Overall hydraulic efficiency for pumping at 300rpm (left), 500rpm (right)

- Partial flow diverting only operating strategy tested
- Efficiency does not fall below 40%

Comparison of Actuation Techniques

• Both prototypes use the same valves

ifk

- Comparable efficiency across entire range
- Variability where timing is most critical
 - Proves increased repeatability of mechanical actuation

Overall hydraulic efficiency for both prototypes, 300rpm, 103bar (left), 500rpm 103 bar (right)

1 Conclusions and Future Work

- Both actuation techniques provide an increase in efficiency for the lower displacement ranges
- Mechanical actuation is the superior techinique
 - Similar efficiency
 - No sensors or controls
 - No electrical energy consumption
- Potential to improve
 - Change to radial piston orientation to use one central cam for each piston
 - Increase cam diameter to minimize cam friction
 - Increase valve size to reduce valve losses

Thank you for your attention!

Contact:

James Marschand Purdue University jmarsch@purdue.edu

