

Development of a rotary pneumatic transformer

Merkelbach, Stephan Reinertz, Olivier Murrenhoff, Hubertus

Higher Efficiency by lower driving pressure

1	Motivation
2	Novel Concept
3	Test Rig & Results
4	Conclusion

State of the Art – Double Piston Booster

Advantages

- Simple implementation
- Cheap components
- Pressure ratio adaptable through driving pressure in outer chambers

Disadvantages

- Only limited efficiency improvements possible
- High noise emissions

Novel Concept – Rotational Booster

Two Rotational Units

- Motor and compressor mounted on one common shaft
- Based on radial piston units
- Low noise emission because of guided movement

Control Concept

1	Motivation
2	Novel Concept
3	Toet Dig & Doculte
3	Test My & Mesulis

Test Rig Design

Measurement System Exergy Efficiency Supply & output pressure $\zeta = \frac{\Delta E_{\text{out}}}{\Delta E_{\text{in}}} = \frac{\Delta m_{\text{out}} \cdot \ln\left(\frac{1}{\Delta E_{\text{in}}}\right)}{\Delta E_{\text{in}}}$ Supply & output massflow Delivery to 5 litre accumulator volume Process considered isothermal

Cooling of air inside accumulator

<u>p_{out</u></u>} p_{amb} $\Delta m_{in} \cdot \ln$ p_{am}

Functional model

Two Configurations

- Built from "off the shelf"-components
- 5-cylinder-motor (75 cm³), 3-cylinder-compressor (45 cm³)
- 3-cylinder motor (45 cm³), 3-cylinder compressor (16 cm³)
- Electronic control in dependency of the rotational position
 - Actuation of motor via switching valves
 - Actuation of compressor via check valves

First working example

Experimental Results

Reduction of losses		
Compression losses	Friction losses	
 Large influence on the efficiency 	 Pistons sealed with O-rings 	
 Reduction of dead volume necessary 	 Different sealing concepts currently under examination 	
N 1 S S S S S S S S S S S S S S S S S S	 Reduction of friction losses by about 75 % 	
or all output mas		
Normalised		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
0 0.1 0.2 0.3 0.4 0.5 Ratio V _{dead} / V _{cyl}		

1	Motivation
2	Novel Concept
3	Test Rig & Results
4	Conclusion

Enhancement of energy efficiency

- Reduction of overall system pressure
- Local pressure boosting

Novel booster concept

- Based on radial piston units
- Motor and compressor mounted on single shaft

Working example

- Different sizes working
- Fast response
- Efficiency of about 45 to 59 % reached
- Low noise emission

Thank you for your attention!

Contact:

Stephan Merkelbach Stephan.Merkelbach @ifas.rwth-aachen.de

